- постоянной кривизны пространство
- нязменнай крывіні прастора
Русско-белорусский математический словарь. 2013.
Русско-белорусский математический словарь. 2013.
ПОСТОЯННОЙ КРИВИЗНЫ ПРОСТРАНСТВО — риманово пространство М, у к рого секционная кривизна K(s) по всем двумерным направлениям а постоянна: если К(s)=k, то говорят, что П. к. п. имеет кривизну k. Согласно теореме Шура, риманово пространство М п, n>2, есть П. к. п., если для любой … Математическая энциклопедия
ПРОСТРАНСТВО И ВРЕМЯ — категории, обозначающие осн. формы существования материи. Пр во (П.) выражает порядок сосуществования отд. объектов, время (В.) порядок смены явлений. П. и в. осн. понятия всех разделов физики. Они играют гл. роль на эмпирич. уровне физ. познания … Физическая энциклопедия
РИМАНОВО ПРОСТРАНСТВО ОБОБЩЕННОЕ — пространство с внутренней метрикой, подчиненное нек рым ограничениям на кривизну. К ним относятся пространства с кривизной, ограниченной сверху , и др. (см. [3]). Р. п. о. отличаются от римановых пространств не только большей общностью, но и тем … Математическая энциклопедия
ПСЕВДОРИМАНОВО ПРОСТРАНСТВО — пространство аффинной связности (без кручения), касательное пространство в каждой точке к рого является псевдоевклидовым пространством. Пусть А п есть n пространство аффинной связности (без кручения) и lRn касательное псевдоевклидово пространство … Математическая энциклопедия
Пространство анти-де Ситтера — В математике и физике, n мерное пространство анти де Ситтера, обозначаемое , представляет собой максимально симметричное, односвязное, псевдориманово многообразие постоянной отрицательной кривизны. Его можно считать псевдоримановым аналогом n… … Википедия
Риманово пространство — пространство, в малых областях которого имеет место приближённо (с точностью до малых высшего порядка сравнительно с размерами областей) евклидова геометрия, хотя точно такое пространство может не быть евклидовым. Р. п. названы по имени Б … Большая советская энциклопедия
РИМАНОВО ПРОСТРАНСТВО — пространство, в малых областях к рого имеет место приближенно (с точностью до малых высшего порядка сравнительно с размерами областей) евклидова геометрия, хотя в целом такое пространство может не быть евклидовым. Р. п. названо по имени Б. Римана … Математическая энциклопедия
ОТРИЦАТЕЛЬНОЙ КРИВИЗНЫ ПОВЕРХНОСТЬ — в непосредственном понимании Двумерная поверхность трехмерного евклидова пространства, к рая в каждой своей точке имеет отрицательную гауссову кривизну К<0. Простейшие примеры: однополостный гиперболоид (рис. 1, а), гиперболический параболоид… … Математическая энциклопедия
СУБПРОЕКТИВНОЕ ПРОСТРАНСТВО — одно из обобщений пространств постоянной кривизны (проективного пространства). Определяется k кратное проективное пространство аффинной связности, геодезические линии к рого выражаются в нек рой системе координат системой из (п 1) уравнений, из к … Математическая энциклопедия
РИМАНОВО ПРОСТРАНСТВО ОДНОРОДНОЕ — риманово пространство ( М,g) вместе с транзитивной эффективной группой Gего движений. Пусть K стационарная подгруппа фиксированной точки Тогда многообразие Мотождествляется с факторпространством G/K с помощью биекции , а риманова метрика g… … Математическая энциклопедия
ПСЕВДОЕВКЛИДОВО ПРОСТРАНСТВО — действительное аффинное пространство, в к ром каждым двум векторам a и b поставлено в соответствие определенное число, называемое скалярным произведением ( а, b). 1) Скалярное произведение коммутативно: ( а, b) =(b, а). 2) скалярное произведение… … Математическая энциклопедия